Euler Bernoulli beam with cubic spring and damper

Euler Bernoulli beam with cubic spring and damper under parametric excitation

Contents

Generate model

Instead of external excitation on the last node, the excitation here is of parametric type. The tip of the beam is subject to linear parametric excitation. The experiment this example is based on can be found in

Chen, C. C. & Yeh, M. K.: Parametric instability of a beam under electromagnetic excitation. Journal of Sound and Vibration 240,747–764, https://doi.org/10.1006/jsvi.2000.3255; A schematic depiction of the model is given by

clear all
nElements = 5;
kappa = 50; % cubic spring
gamma = 0.01; % cubic damping
[M,C,K,fnl,fext] = build_model_parametric(kappa, gamma, nElements);
sigma = 10;
C = sigma * C;

n = length(M);

Dynamical system setup

We consider the parametrically excited system

which can be written in the first-order form as

where

order = 2;
DS = DynamicalSystem(order);
set(DS,'M',M,'C',C,'K',K,'fnl',fnl);
set(DS.Options,'Emax',5,'Nmax',10,'notation','multiindex')
epsilon = 0;
DS.add_forcing(fext,epsilon);

Linear Modal Analysis

% Analyse spectrum
[V,D,W_evec] = DS.linear_spectral_analysis();

% Choose Master subspace (perform resonance analysis)

% Set up SSM object
S = SSM(DS);
set(S.Options, 'reltol', 0.3,'notation','multiindex')

%Choose Master subspace
resModes = [1,2];
S.choose_E(resModes);
Due to high-dimensionality, we compute only the first 5 eigenvalues with the smallest magnitude. These would also be used to compute the spectral quotients
Assuming a proportional damping hypthesis with symmetric matrices
modal damping ratio for 1 mode is 8.840017e-03
modal damping ratio for 2 mode is 5.488086e-02
modal damping ratio for 3 mode is 1.541080e-01
modal damping ratio for 4 mode is 3.044305e-01
modal damping ratio for 5 mode is 5.052761e-01

 The first 10 nonzero eigenvalues are given as 
   1.0e+02 *

  -0.0006 + 0.0700i
  -0.0006 - 0.0700i
  -0.0241 + 0.4383i
  -0.0241 - 0.4383i
  -0.1900 + 1.2181i
  -0.1900 - 1.2181i
  -0.7414 + 2.3198i
  -0.7414 - 2.3198i
  -2.0424 + 3.4882i
  -2.0424 - 3.4882i

No (near) outer resonances detected in the (truncated) spectrum
sigma_out = 3300
(near) inner resonance detected for the following combination of master eigenvalues
     2     1
     3     2
     4     3
     5     4
     1     2
     2     3
     3     4
     4     5

These are in resonance with the follwing eigenvalues of the master subspace
  -0.0619 + 7.0003i
  -0.0619 + 7.0003i
  -0.0619 + 7.0003i
  -0.0619 + 7.0003i
  -0.0619 - 7.0003i
  -0.0619 - 7.0003i
  -0.0619 - 7.0003i
  -0.0619 - 7.0003i

sigma_in = 3300

Forced response curves using SSMs

Obtaining forced response curve in reduced-polar coordinate

order = 7; % Approximation order

setup options

outdof = n;
set(S.Options,    'reltol', 0.5,'IRtol',0.02,'notation', 'multiindex','contribNonAuto',true)
set(S.FRCOptions, 'nt', 2^7)
set(S.FRCOptions, 'outdof',outdof, 'coordinates','cartesian')
set(S.FRCOptions, 'branchSwitch',true,'periodsRatio',2) %continue BPs of primary branch, 2T response
set(S.contOptions,'PtMX',40,'h_min',1e-4,'h0',1e-4,'bi_direct',false)

choose frequency range around the master mode frequency

omega0 = imag(S.E.spectrum(1));
OmegaRange =[1.6,2.6]*omega0  % Subharmonic resonance at Omega = 2 omega_0

epSamp = [0.2 0.3,0.4,0.5,0.6];
OmegaRange =

   11.2005   18.2008

Extract forced response curve

startFRCSSM = tic;
Sweep = S.SSM_poSweeps('SSMsweep',resModes,order,epSamp,OmegaRange);
timings.FRCSSM = toc(startFRCSSM);
figFRC = gcf;

Forcing amplitude: epsilon = 0.2

(near) outer resonance detected for the following combination of master eigenvalues
     6     0
     7     1
     8     2
     0     6
     1     7
     2     8

These are in resonance with the follwing eigenvalues of the slave subspace
  -2.4089 +43.8271i
  -2.4089 +43.8271i
  -2.4089 +43.8271i
  -2.4089 -43.8271i
  -2.4089 -43.8271i
  -2.4089 -43.8271i

sigma_out = 3300
(near) inner resonance detected for the following combination of master eigenvalues
     2     1
     3     2
     4     3
     5     4
     1     2
     2     3
     3     4
     4     5

These are in resonance with the follwing eigenvalues of the master subspace
  -0.0619 + 7.0003i
  -0.0619 + 7.0003i
  -0.0619 + 7.0003i
  -0.0619 + 7.0003i
  -0.0619 - 7.0003i
  -0.0619 - 7.0003i
  -0.0619 - 7.0003i
  -0.0619 - 7.0003i

sigma_in = 3300
Due to (near) outer resonance, the exisitence of the manifold is questionable and the underlying computation may suffer.
Attempting manifold computation
Manifold computation time at order 2 = 00:00:00
Estimated memory usage at order  2 = 1.73E-02 MB
Manifold computation time at order 3 = 00:00:00
Estimated memory usage at order  3 = 2.30E-02 MB
Manifold computation time at order 4 = 00:00:00
Estimated memory usage at order  4 = 3.27E-02 MB
Manifold computation time at order 5 = 00:00:00
Estimated memory usage at order  5 = 4.54E-02 MB
Manifold computation time at order 6 = 00:00:00
Estimated memory usage at order  6 = 6.25E-02 MB
Manifold computation time at order 7 = 00:00:00
Estimated memory usage at order  7 = 8.43E-02 MB

 Run='SSMsweep0.2.po': Continue primary family of periodic orbits.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          0.00e+00  1.59e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period        amp10        Znorm
    0  00:00:00   1.5920e+01      1  EP      1.1201e+01   1.1219e+00   0.0000e+00   0.0000e+00
   10  00:00:04   1.5987e+01      2          1.1248e+01   1.1172e+00   0.0000e+00   0.0000e+00
   20  00:00:10   1.9757e+01      3          1.3941e+01   9.0143e-01   0.0000e+00   0.0000e+00
   30  00:00:15   2.4730e+01      4          1.7471e+01   7.1926e-01   0.0000e+00   0.0000e+00
   33  00:00:16   2.5759e+01      5  EP      1.8201e+01   6.9043e-01   0.0000e+00   0.0000e+00
  

Forcing amplitude: epsilon = 0.3

Attempting manifold computation
Manifold computation time at order 2 = 00:00:00
Estimated memory usage at order  2 = 1.73E-02 MB
Manifold computation time at order 3 = 00:00:00
Estimated memory usage at order  3 = 2.30E-02 MB
Manifold computation time at order 4 = 00:00:00
Estimated memory usage at order  4 = 3.27E-02 MB
Manifold computation time at order 5 = 00:00:00
Estimated memory usage at order  5 = 4.54E-02 MB
Manifold computation time at order 6 = 00:00:00
Estimated memory usage at order  6 = 6.25E-02 MB
Manifold computation time at order 7 = 00:00:00
Estimated memory usage at order  7 = 8.43E-02 MB

 Run='SSMsweep0.3.po': Continue primary family of periodic orbits.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          0.00e+00  1.59e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period        amp10        Znorm
    0  00:00:00   1.5922e+01      1  EP      1.1201e+01   1.1219e+00   0.0000e+00   0.0000e+00
   10  00:00:03   1.5989e+01      2          1.1248e+01   1.1172e+00   0.0000e+00   0.0000e+00
   20  00:00:14   1.9662e+01      3  SN      1.3872e+01   9.0587e-01   0.0000e+00   0.0000e+00
   20  00:00:14   1.9662e+01      4  BP      1.3872e+01   9.0587e-01   0.0000e+00   0.0000e+00
   20  00:00:14   1.9758e+01      5          1.3941e+01   9.0143e-01   0.0000e+00   0.0000e+00
   21  00:00:20   2.0023e+01      6  SN      1.4129e+01   8.8940e-01   0.0000e+00   0.0000e+00
   21  00:00:20   2.0023e+01      7  BP      1.4129e+01   8.8940e-01   0.0000e+00   0.0000e+00
   30  00:00:25   2.4731e+01      8          1.7471e+01   7.1926e-01   0.0000e+00   0.0000e+00
   33  00:00:27   2.5760e+01      9  EP      1.8201e+01   6.9043e-01   0.0000e+00   0.0000e+00

 Run='SSMsweep0.3.po_BP_1': Continue secondary branch of periodic orbits in 'SSMsweep0.3.po' .

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period        amp10        Znorm
    0  00:00:00   1.9662e+01      1  EP      1.3872e+01   9.0587e-01   0.0000e+00   0.0000e+00
    1  00:00:02   1.9662e+01      2  BP      1.3872e+01   9.0587e-01   7.7388e-13   1.0086e-08
   10  00:00:04   1.9664e+01      3          1.3874e+01   9.0577e-01   2.9388e-06   3.8306e-02
   20  00:00:05   1.9701e+01      4          1.3899e+01   9.0409e-01   1.2503e-05   1.6335e-01
   30  00:00:19   2.0718e+01      5          1.4623e+01   8.5936e-01   6.0745e-05   8.4040e-01
   40  00:00:23   2.0729e+01      6  SN      1.4630e+01   8.5892e-01   6.0414e-05   8.3590e-01
   40  00:00:23   2.0729e+01      7  FP      1.4631e+01   8.5890e-01   6.0433e-05   8.3619e-01
   40  00:00:23   2.0729e+01      8  EP      1.4631e+01   8.5890e-01   6.0433e-05   8.3619e-01

 Run='SSMsweep0.3.po_BP_2': Continue secondary branch of periodic orbits in 'SSMsweep0.3.po' .

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period        amp10        Znorm
    0  00:00:00   2.0023e+01      1  EP      1.4129e+01   8.8940e-01   0.0000e+00   0.0000e+00
    1  00:00:01   2.0023e+01      2  BP      1.4129e+01   8.8940e-01   3.0758e-13   4.0588e-09
   10  00:00:03   2.0026e+01      3          1.4131e+01   8.8930e-01   3.3613e-06   4.4364e-02
   20  00:00:05   2.0066e+01      4          1.4159e+01   8.8750e-01   1.4026e-05   1.8558e-01
   30  00:00:17   2.0724e+01      5          1.4627e+01   8.5912e-01   5.9757e-05   8.2626e-01
   40  00:00:22   2.0728e+01      6  EP      1.4630e+01   8.5897e-01   6.0334e-05   8.3472e-01
  

Forcing amplitude: epsilon = 0.4

Due to (near) outer resonance, the exisitence of the manifold is questionable and the underlying computation may suffer.
Attempting manifold computation
Manifold computation time at order 2 = 00:00:00
Estimated memory usage at order  2 = 1.73E-02 MB
Manifold computation time at order 3 = 00:00:00
Estimated memory usage at order  3 = 2.30E-02 MB
Manifold computation time at order 4 = 00:00:00
Estimated memory usage at order  4 = 3.27E-02 MB
Manifold computation time at order 5 = 00:00:00
Estimated memory usage at order  5 = 4.54E-02 MB
Manifold computation time at order 6 = 00:00:00
Estimated memory usage at order  6 = 6.25E-02 MB
Manifold computation time at order 7 = 00:00:00
Estimated memory usage at order  7 = 8.43E-02 MB

 Run='SSMsweep0.4.po': Continue primary family of periodic orbits.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          0.00e+00  1.59e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period        amp10        Znorm
    0  00:00:00   1.5924e+01      1  EP      1.1201e+01   1.1219e+00   0.0000e+00   0.0000e+00
   10  00:00:03   1.5991e+01      2          1.1248e+01   1.1172e+00   0.0000e+00   0.0000e+00
   20  00:00:13   1.9559e+01      3  SN      1.3798e+01   9.1077e-01   0.0000e+00   0.0000e+00
   20  00:00:13   1.9559e+01      4  BP      1.3798e+01   9.1077e-01   0.0000e+00   0.0000e+00
   20  00:00:13   1.9760e+01      5          1.3941e+01   9.0143e-01   0.0000e+00   0.0000e+00
   21  00:00:18   2.0130e+01      6  SN      1.4204e+01   8.8473e-01   0.0000e+00   0.0000e+00
   21  00:00:18   2.0130e+01      7  BP      1.4204e+01   8.8473e-01   0.0000e+00   0.0000e+00
   30  00:00:23   2.4732e+01      8          1.7471e+01   7.1926e-01   0.0000e+00   0.0000e+00
   33  00:00:24   2.5761e+01      9  EP      1.8201e+01   6.9043e-01   0.0000e+00   0.0000e+00

 Run='SSMsweep0.4.po_BP_1': Continue secondary branch of periodic orbits in 'SSMsweep0.4.po' .

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period        amp10        Znorm
    0  00:00:00   1.9559e+01      1  EP      1.3798e+01   9.1077e-01   0.0000e+00   0.0000e+00
    1  00:00:01   1.9559e+01      2  BP      1.3798e+01   9.1077e-01   3.7013e-13   4.8024e-09
   10  00:00:03   1.9561e+01      3          1.3799e+01   9.1067e-01   2.9839e-06   3.8721e-02
   20  00:00:05   1.9598e+01      4          1.3825e+01   9.0894e-01   1.2413e-05   1.6142e-01
   30  00:00:15   2.1500e+01      5          1.5177e+01   8.2800e-01   8.3718e-05   1.2123e+00
   40  00:00:17   2.1522e+01      6  EP      1.5193e+01   8.2713e-01   8.3408e-05   1.2087e+00

 Run='SSMsweep0.4.po_BP_2': Continue secondary branch of periodic orbits in 'SSMsweep0.4.po' .

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period        amp10        Znorm
    0  00:00:00   2.0130e+01      1  EP      1.4204e+01   8.8473e-01   0.0000e+00   0.0000e+00
    1  00:00:01   2.0130e+01      2  BP      1.4204e+01   8.8473e-01   4.3888e-13   5.7988e-09
   10  00:00:03   2.0132e+01      3          1.4205e+01   8.8463e-01   3.3134e-06   4.3786e-02
   20  00:00:05   2.0172e+01      4          1.4234e+01   8.8287e-01   1.3803e-05   1.8289e-01
   30  00:00:15   2.1507e+01      5          1.5182e+01   8.2770e-01   8.2232e-05   1.1899e+00
   40  00:00:19   2.1522e+01      6  SN      1.5192e+01   8.2715e-01   8.3330e-05   1.2075e+00
   40  00:00:19   2.1522e+01      7  FP      1.5193e+01   8.2714e-01   8.3351e-05   1.2078e+00
   40  00:00:19   2.1522e+01      8  EP      1.5193e+01   8.2714e-01   8.3357e-05   1.2079e+00
  

Forcing amplitude: epsilon = 0.5

Due to (near) outer resonance, the exisitence of the manifold is questionable and the underlying computation may suffer.
Attempting manifold computation
Manifold computation time at order 2 = 00:00:00
Estimated memory usage at order  2 = 1.73E-02 MB
Manifold computation time at order 3 = 00:00:00
Estimated memory usage at order  3 = 2.30E-02 MB
Manifold computation time at order 4 = 00:00:00
Estimated memory usage at order  4 = 3.27E-02 MB
Manifold computation time at order 5 = 00:00:00
Estimated memory usage at order  5 = 4.54E-02 MB
Manifold computation time at order 6 = 00:00:00
Estimated memory usage at order  6 = 6.25E-02 MB
Manifold computation time at order 7 = 00:00:00
Estimated memory usage at order  7 = 8.43E-02 MB

 Run='SSMsweep0.5.po': Continue primary family of periodic orbits.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          0.00e+00  1.59e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period        amp10        Znorm
    0  00:00:00   1.5927e+01      1  EP      1.1201e+01   1.1219e+00   0.0000e+00   0.0000e+00
   10  00:00:03   1.5994e+01      2          1.1248e+01   1.1172e+00   0.0000e+00   0.0000e+00
   20  00:00:13   1.9467e+01      3  SN      1.3730e+01   9.1522e-01   0.0000e+00   0.0000e+00
   20  00:00:13   1.9467e+01      4  BP      1.3730e+01   9.1522e-01   0.0000e+00   0.0000e+00
   20  00:00:13   1.9762e+01      5          1.3941e+01   9.0143e-01   0.0000e+00   0.0000e+00
   21  00:00:19   2.0227e+01      6  SN      1.4271e+01   8.8056e-01   0.0000e+00   0.0000e+00
   21  00:00:19   2.0227e+01      7  BP      1.4271e+01   8.8056e-01   0.0000e+00   0.0000e+00
   30  00:00:24   2.4734e+01      8          1.7471e+01   7.1926e-01   0.0000e+00   0.0000e+00
   33  00:00:25   2.5763e+01      9  EP      1.8201e+01   6.9043e-01   0.0000e+00   0.0000e+00

 Run='SSMsweep0.5.po_BP_1': Continue secondary branch of periodic orbits in 'SSMsweep0.5.po' .

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period        amp10        Znorm
    0  00:00:00   1.9467e+01      1  EP      1.3730e+01   9.1522e-01   0.0000e+00   0.0000e+00
    1  00:00:01   1.9467e+01      2  BP      1.3730e+01   9.1522e-01   1.9278e-13   2.4916e-09
   10  00:00:03   1.9469e+01      3          1.3732e+01   9.1512e-01   2.9989e-06   3.8764e-02
   20  00:00:05   1.9506e+01      4          1.3758e+01   9.1338e-01   1.2479e-05   1.6164e-01
   30  00:00:09   2.2139e+01      5          1.5629e+01   8.0405e-01   9.8876e-05   1.4867e+00
   40  00:00:18   2.2251e+01      6  EP      1.5708e+01   7.9998e-01   9.9210e-05   1.4999e+00

 Run='SSMsweep0.5.po_BP_2': Continue secondary branch of periodic orbits in 'SSMsweep0.5.po' .

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period        amp10        Znorm
    0  00:00:00   2.0227e+01      1  EP      1.4271e+01   8.8056e-01   0.0000e+00   0.0000e+00
    1  00:00:01   2.0227e+01      2  BP      1.4271e+01   8.8056e-01   1.5374e-13   2.0337e-09
   10  00:00:03   2.0229e+01      3          1.4272e+01   8.8046e-01   3.3069e-06   4.3750e-02
   20  00:00:05   2.0269e+01      4          1.4301e+01   8.7872e-01   1.3771e-05   1.8267e-01
   30  00:00:14   2.2225e+01      5          1.5690e+01   8.0090e-01   9.7737e-05   1.4745e+00
   40  00:00:18   2.2251e+01      6  EP      1.5708e+01   7.9998e-01   9.9108e-05   1.4983e+00
  

Forcing amplitude: epsilon = 0.6

Due to (near) outer resonance, the exisitence of the manifold is questionable and the underlying computation may suffer.
Attempting manifold computation
Manifold computation time at order 2 = 00:00:00
Estimated memory usage at order  2 = 1.73E-02 MB
Manifold computation time at order 3 = 00:00:00
Estimated memory usage at order  3 = 2.30E-02 MB
Manifold computation time at order 4 = 00:00:00
Estimated memory usage at order  4 = 3.27E-02 MB
Manifold computation time at order 5 = 00:00:00
Estimated memory usage at order  5 = 4.54E-02 MB
Manifold computation time at order 6 = 00:00:00
Estimated memory usage at order  6 = 6.25E-02 MB
Manifold computation time at order 7 = 00:00:00
Estimated memory usage at order  7 = 8.43E-02 MB

 Run='SSMsweep0.6.po': Continue primary family of periodic orbits.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          0.00e+00  1.59e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period        amp10        Znorm
    0  00:00:00   1.5930e+01      1  EP      1.1201e+01   1.1219e+00   0.0000e+00   0.0000e+00
   10  00:00:03   1.5997e+01      2          1.1248e+01   1.1172e+00   0.0000e+00   0.0000e+00
   20  00:00:13   1.9380e+01      3  SN      1.3666e+01   9.1953e-01   0.0000e+00   0.0000e+00
   20  00:00:13   1.9380e+01      4  BP      1.3666e+01   9.1953e-01   0.0000e+00   0.0000e+00
   20  00:00:13   1.9765e+01      5          1.3941e+01   9.0143e-01   0.0000e+00   0.0000e+00
   22  00:00:20   2.0320e+01      6  SN      1.4335e+01   8.7661e-01   0.0000e+00   0.0000e+00
   22  00:00:20   2.0320e+01      7  BP      1.4335e+01   8.7661e-01   0.0000e+00   0.0000e+00
   30  00:00:24   2.4736e+01      8          1.7471e+01   7.1926e-01   0.0000e+00   0.0000e+00
   33  00:00:25   2.5765e+01      9  EP      1.8201e+01   6.9043e-01   0.0000e+00   0.0000e+00

 Run='SSMsweep0.6.po_BP_1': Continue secondary branch of periodic orbits in 'SSMsweep0.6.po' .

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period        amp10        Znorm
    0  00:00:00   1.9380e+01      1  EP      1.3666e+01   9.1953e-01   0.0000e+00   0.0000e+00
    1  00:00:01   1.9380e+01      2  BP      1.3666e+01   9.1953e-01   9.7619e-13   1.2570e-08
   10  00:00:03   1.9382e+01      3          1.3668e+01   9.1943e-01   3.0038e-06   3.8683e-02
   20  00:00:05   1.9419e+01      4          1.3694e+01   9.1767e-01   1.2501e-05   1.6133e-01
   30  00:00:09   2.2053e+01      5          1.5566e+01   8.0731e-01   1.0123e-04   1.5145e+00
   40  00:00:21   2.3002e+01      6  EP      1.6239e+01   7.7383e-01   1.1176e-04   1.7665e+00

 Run='SSMsweep0.6.po_BP_2': Continue secondary branch of periodic orbits in 'SSMsweep0.6.po' .

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period        amp10        Znorm
    0  00:00:00   2.0320e+01      1  EP      1.4335e+01   8.7661e-01   0.0000e+00   0.0000e+00
    1  00:00:01   2.0320e+01      2  BP      1.4335e+01   8.7661e-01   6.5114e-13   8.6239e-09
   10  00:00:03   2.0322e+01      3          1.4337e+01   8.7651e-01   3.3118e-06   4.3870e-02
   20  00:00:05   2.0362e+01      4          1.4365e+01   8.7479e-01   1.3789e-05   1.8314e-01
   30  00:00:11   2.2767e+01      5          1.6073e+01   7.8182e-01   1.0569e-04   1.6440e+00
   40  00:00:21   2.3001e+01      6  EP      1.6239e+01   7.7384e-01   1.1157e-04   1.7629e+00

Stability Diagram from Reduced Dynamics

We extract the stability diagram using continuation of bifurcations. By extending the dynamical system

to an autonomous system of variables the trivial fixed point of the paremtrically excited system can be interpreted as the periodic orbit . Any change of the stability behaviour of this periodic orbit is then given by some bifurcation. At the stability boundary of the principal resonance with nontrivial periodic orbits with response period emerge. If continuation of periodic orbits is used then these bifurcations show up as period doubling ('PD') bifurcations. Initially continuing periodic orbits leads to a saddle node ('SN') bifurcation. The function extract_Stability_Diagram allows to chose between these two options for constructing the stability diagram.

set(S.contOptions,'PtMX',50,'bi_direct',true)
set(S.FRCOptions,'branchSwitch',true)
PlotSD = true;

p0 = [2*omega0,0]; % Initial condition
epRange = [0,1];

figure();
startSDSSM = tic;
SD = S.extract_Stability_Diagram(resModes, order, OmegaRange,epRange,'amp', p0,'PD',PlotSD);
timings.SDSSM = toc(startSDSSM);
figSD = gcf;
(near) outer resonance detected for the following combination of master eigenvalues
     6     0
     7     1
     8     2
     0     6
     1     7
     2     8

These are in resonance with the follwing eigenvalues of the slave subspace
  -2.4089 +43.8271i
  -2.4089 +43.8271i
  -2.4089 +43.8271i
  -2.4089 -43.8271i
  -2.4089 -43.8271i
  -2.4089 -43.8271i

sigma_out = 3300
(near) inner resonance detected for the following combination of master eigenvalues
     2     1
     3     2
     4     3
     5     4
     1     2
     2     3
     3     4
     4     5

These are in resonance with the follwing eigenvalues of the master subspace
  -0.0619 + 7.0003i
  -0.0619 + 7.0003i
  -0.0619 + 7.0003i
  -0.0619 + 7.0003i
  -0.0619 - 7.0003i
  -0.0619 - 7.0003i
  -0.0619 - 7.0003i
  -0.0619 - 7.0003i

sigma_in = 3300
Due to (near) outer resonance, the exisitence of the manifold is questionable and the underlying computation may suffer.
Attempting manifold computation
Manifold computation time at order 2 = 00:00:00
Estimated memory usage at order  2 = 1.73E-02 MB
Manifold computation time at order 3 = 00:00:00
Estimated memory usage at order  3 = 2.30E-02 MB
Manifold computation time at order 4 = 00:00:00
Estimated memory usage at order  4 = 3.27E-02 MB
Manifold computation time at order 5 = 00:00:00
Estimated memory usage at order  5 = 4.54E-02 MB
Manifold computation time at order 6 = 00:00:00
Estimated memory usage at order  6 = 6.25E-02 MB
Manifold computation time at order 7 = 00:00:00
Estimated memory usage at order  7 = 8.43E-02 MB

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          0.00e+00  1.40e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE           eps    po.period
    0  00:00:00   1.4015e+01      1  EP      0.0000e+00   4.4878e-01
   10  00:00:00   1.4015e+01      2          4.8092e-02   4.4878e-01
   13  00:00:01   1.4018e+01      3  PD      2.0819e-01   4.4878e-01
   16  00:00:01   1.4086e+01      4  EP      1.0000e+00   4.4878e-01

 Run='ROM_family_bif1': Continue bifurcations from point 3 in run 'ROM_detect_bif'.

    STEP   DAMPING               NORMS              COMPUTATION TIMES
  IT SIT     GAMMA     ||d||     ||f||     ||U||   F(x)  DF(x)  SOLVE
   0                          1.05e-09  2.10e+01    0.0    0.0    0.0

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period          eps
    0  00:00:00   2.1036e+01      1  EP      1.4001e+01   4.4878e-01   2.0819e-01
   10  00:00:02   2.1033e+01      2          1.3998e+01   4.4885e-01   2.0823e-01
   20  00:00:06   2.0753e+01      3          1.3783e+01   4.5587e-01   4.2149e-01
   30  00:00:11   2.0266e+01      4          1.3379e+01   4.6963e-01   1.0660e+00
   40  00:00:16   1.8917e+01      5          1.1858e+01   5.2987e-01   3.6102e+00
   44  00:00:18   1.8601e+01      6  EP      1.1201e+01   5.6097e-01   4.7147e+00

 STEP      TIME        ||U||  LABEL  TYPE            om    po.period          eps
    0  00:00:18   2.1036e+01      7  EP      1.4001e+01   4.4878e-01   2.0819e-01
   10  00:00:20   2.1039e+01      8          1.4003e+01   4.4870e-01   2.0823e-01
   20  00:00:24   2.1333e+01      9          1.4219e+01   4.4190e-01   4.2149e-01
   30  00:00:29   2.1915e+01     10          1.4622e+01   4.2970e-01   1.0660e+00
   40  00:00:34   2.4446e+01     11          1.6144e+01   3.8921e-01   3.6105e+00
   50  00:00:38   2.7060e+01     12  EP      1.7501e+01   3.5902e-01   5.8913e+00
Total time spent on Stability Diagram computation = 00:00:42

Plot SD into FRC

BBplotSDinSweep(gcf,SD_full);